Evaluation of a fast implicit solvent model for molecular dynamics simulations.

نویسندگان

  • Philippe Ferrara
  • Joannis Apostolakis
  • Amedeo Caflisch
چکیده

A solvation term based on the solvent accessible surface area (SASA) is combined with the CHARMM polar hydrogen force field for the efficient simulation of peptides and small proteins in aqueous solution. Only two atomic solvation parameters are used: one is negative for favoring the direct solvation of polar groups and the other positive for taking into account the hydrophobic effect on apolar groups. To approximate the water screening effects on the intrasolute electrostatic interactions, a distance-dependent dielectric function is used and ionic side chains are neutralized. The use of an analytical approximation of the SASA renders the model extremely efficient (i.e., only about 50% slower than in vacuo simulations). The limitations and range of applicability of the SASA model are assessed by simulations of proteins and structured peptides. For the latter, the present study and results reported elsewhere show that with the SASA model it is possible to sample a significant amount of folding/unfolding transitions, which permit the study of the thermodynamics and kinetics of folding at an atomic level of detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth-permittivity finite difference Poisson-Boltzmann method.

A fast stable finite difference Poisson-Boltzmann (FDPB) model for implicit solvation in molecular dynamics simulations was developed using the smooth permittivity FDPB method implemented in the OpenEye ZAP libraries. This was interfaced with two widely used molecular dynamics packages, AMBER and CHARMM. Using the CHARMM-ZAP software combination, the implicit solvent model was tested on eight p...

متن کامل

SHORT COMMUNICATION Modeling Loop Reorganization Free Energies of Acetylcholinesterase: A Comparison of Explicit and Implicit Solvent Models

The treatment of hydration effects in protein dynamics simulations varies in model complexity and spans the range from the computationally intensive microscopic evaluation to simple dielectric screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy differencebetween two loop conformations in acetylcholinesterase....

متن کامل

Comparing Solvent Models for Molecular Dynamics of Protein

Discrete nature of water plays critical role in protein folding and thermodynamics. Explicit all-atom modeling of solvent severely limits the length and time scales of molecular dynamics simulations of protein. In this project, we evaluated accuracy and computational efficiency of four different solvent models, all-atom solvent models ( SPC/E and TIP3P ), Generalized Born Implicit Solvent, and ...

متن کامل

Modeling loop reorganization free energies of acetylcholinesterase: a comparison of explicit and implicit solvent models.

The treatment of hydration effects in protein dynamics simulations varies in model complexity and spans the range from the computationally intensive microscopic evaluation to simple dielectric screening of charge-charge interactions. This paper compares different solvent models applied to the problem of estimating the free-energy difference between two loop conformations in acetylcholinesterase...

متن کامل

Constant pH Replica Exchange Molecular Dynamics in Explicit Solvent Using Discrete Protonation States: Implementation, Testing, and Validation

By utilizing Graphics Processing Units, we show that constant pH molecular dynamics simulations (CpHMD) run in Generalized Born (GB) implicit solvent for long time scales can yield poor pKa predictions as a result of sampling unrealistic conformations. To address this shortcoming, we present a method for performing constant pH molecular dynamics simulations (CpHMD) in explicit solvent using a d...

متن کامل

AGBNP: An analytic implicit solvent model suitable for molecular dynamics simulations and high-resolution modeling

We have developed an implicit solvent effective potential (AGBNP) that is suitable for molecular dynamics simulations and high-resolution modeling. It is based on a novel implementation of the pairwise descreening Generalized Born model for the electrostatic component and a new nonpolar hydration free energy estimator. The nonpolar term consists of an estimator for the solute-solvent van der Wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proteins

دوره 46 1  شماره 

صفحات  -

تاریخ انتشار 2002